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Scaling analysis of the site-diluted Ising model in two dimensions
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A combination of recent numerical and theoretical advances are applied to analyze the scaling behavior of
the site-diluted Ising model in two dimensions, paying special attention to the implications for multiplicative
logarithmic corrections. The analysis focuses primarily on the odd sector of the model (i.e., that associated with
magnetic exponents), and in particular on its Lee-Yang zeros, which are determined to high accuracy. Scaling
relations are used to connect to the even (thermal) sector, and a first analysis of the density of zeros yields
information on the specific heat and its corrections. The analysis is fully supportive of the strong scaling
hypothesis and of the scaling relations for logarithmic corrections.
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I. INTRODUCTION

The Ising model in two dimensions with uncorrelated,
quenched random-site or random-bond disorder is a para-
digm for the study of the statistical mechanics of disordered
systems. With moderate dilution, the random system exhibits
a phase transition different to that of the pure system, and the
nature of this transition has been investigated for over three
decades.

For the disordered Ising models in two dimensions, two
scenarios have arisen. The strong universality hypothesis
maintains that the leading critical exponents remain the same
as in the pure case and that the disorder induces multiplica-
tive logarithmic corrections to scaling, while the weak uni-
versality hypothesis favours dilution-dependent leading criti-
cal exponents. While the former is now mostly favored,
especially in the random-bond Ising model (RBIM), the de-
bate regarding the scaling behavior of the specific heat has
persisted, especially in the site-diluted Ising model (RSIM),
focusing on whether this is characterized by an extremely
weak double-logarithmic divergence or a finite cusp. Indeed,
according to the Harris criterion [1], the vanishing of the
specific-heat critical exponent « in the pure Ising model,
marks the borderline between the o> 0 case, where disorder
is relevant and where the critical exponents may change as
random quenched disorder is added, and the & <0 scenario,
where this type of disorder does not alter critical behavior
and the critical exponents are unchanged [1]. In this border-
line circumstance, logarithmic corrections to scaling (distinct
from the logarithmic divergence in the specific heat in the
pure Ising system) may arise.

The issue of scaling in the RSIM is addressed here, as that
is the more contentious version of the model. All of the ther-
modynamic information concerning a statistical mechanical
system is contained in the locus and density of its partition
function zeros [2]. In Ref. [3], the first numerical analysis of
the Lee-Yang zeros in a disordered system (the RSIM) was
performed and the leading critical behavior of the lowest
lying Lee-Yang zeros was extracted through a finite-size
scaling (FSS) analysis. A robust numerical technique to con-
struct the density of zeros from simulational data was given
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in Ref. [4]. Finally, a self-consistent scaling theory which
links the exponents characterising the logarithmic correc-
tions to scaling was recently presented in Refs. [5,6].

Here, these numerical [3,4] and analytical [5,6] advances
are combined to unambiguously determine the leading scal-
ing behavior and potential multiplicative logarithmic correc-
tions in the specific heat through the density of Lee-Yang
zeros and the scaling relations. This and all multiplicative
logarithmic correction-to-scaling exponents for FSS of odd
functions are zero. That is, there are no multiplicative loga-
rithmic corrections for the FSS of the magnetic susceptibil-
ity, the individual Lee-Yang zeros, and the density of zeros.
This comes about through the delicate manner in which the
exponents of the logarithms, which are nonzero in thermal
scaling, balance each other out. In this way, it is established
that the Lee-Yang zeros of disordered systems can be pre-
cisely determined numerically, a density-of-zeros analysis is
applicable to such a system, also at the level of logarithms,
new scaling relations for the logarithmic corrections [5,6] in
this model are confirmed and a negative exponent for the
contentious specific heat or its multiplicative logarithmic
correction is made unlikely.

II. LOGARITHMIC CORRECTIONS AND SCALING
SCENARIOS

Recently a self-consistent scaling theory for logarithmic-
correction exponents has been presented [5,6]. Denoting the
reduced temperature by ¢ and the reduced external field by A,
this theory deals with the circumstances where, in the ab-
sence of field, the specific heat, magnetization, susceptibility,
and correlation length scale, respectively, as

C.o() ~ |¢[™|In| £]|%, (2.1)
mao(1) ~ [t]f]in] 4}, (2.2)
Xoo(1) ~ |2[7|In| 17, (2.3)
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£.(1) ~ |¢[~In] #]”.

At =0 the magnetization scales with reduced field as

(2.4)

() ~ hV9In| £]°. (2.5)

The locus of Lee-Yang zeros along the imaginary h-axis is
parameterized by r and the Yang-Lee edge, which marks the
end of their distribution, is denoted by ryy (7). In the symmet-
ric phase, this scales as

A (2.6)

ryL(t) ~ |f|A|1n| ]

while the density of these zeros along their locus (r>ry;) at
criticality (¢=0) behaves as [4]

goo(r) ~ “2_1|ln r|‘32. 2.7)

The leading critical exponents are related by the standard
scaling relations for continuous phase transitions [7]. The
theory presented in Refs. [5,6] relates the exponents of the
logarithmic corrections in an analogous manner.

With the strong universality hypothesis, the leading criti-
cal exponents for the dilute Ising models are identical to their
pure counterparts

=0 L 7 o=15 =1 (2.8)
a=y, B_ 8’ y_4’ - > v=1, .
with gap exponent
15
A=pB+ Y=g (2.9)

The latter equation has been verified in Ref. [3]. The expo-

nent a, characterizing the leading behavior of the density of
Lee-Yang zeros in Eq. (2.7) is [5]
2-«a

ay=——,

A (2.10)

which gives a,=16/15 if the strong hypothesis (2.8) and
(2.9) holds.

Shalaev [8] and later Shankar and Ludwig [9], and then
Jug and Shalaev [10], used field theory, bosonization tech-
niques, and conformal invariance to derive theoretical pre-
dictions for the logarithmic-correction exponents in the
random-bond case with sufficiently small quenched dilution.
These corrections, which we term the SSLJ exponents, are
[8-10]

1 7 . 1

B=——, H=—. 6=0, p=
P="1¢ 773 =5

a=0,

with specific heat diverging as a double logarithm [6,8,9,11]
C..(1) ~ |In|In] ||. (2.12)

The questions addressed in the literature over the past
three decades concerned (i) the validity of the strong scaling
hypothesis and the veracity of the leading exponents (2.8) in
the diluted cases, (ii) the validity of the theoretical derivation
of the SSLJ correction exponents (2.11), which relies on cer-
tain assumptions regarding the nature of the dilution in the
random-bond case (see, also, Ref. [12] for the random-site
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case), (iii) whether these exponents are dilution independent,
(iv) the vanishing of & and the validity of the double loga-
rithm in Eq. (2.12), and (v) whether or not these sets of
exponents also apply to the random-site version of the
model.

For the two-dimensional random Ising models, an alterna-
tive scenario to (i) has persisted in the literature. This is the
weak universality hypothesis and maintains that certain lead-
ing critical exponents change continuously as the concentra-
tion of impurity defects is increased [13]. In particular, the
exponents «, B, ¥, and v are maintained to be dilution de-
pendent while 6, 7 and the ratios /v and 7/ v remain inde-
pendent of the dilution. Furthermore, while agreeing with the
SSLJ double-logarithmic form (2.12) for the specific heat,
Dotsenko and Dotsenko (DD) used the renormaliztion group
to predict [11]

x-:(1) ~ 7% exp{= c[In(- In 1) %},

where c is a constant related to the concentration of disorder.
While the SSLJ and DD predictions for the susceptibility
differ substantially, it is fair to say that after much work by
various authors the strong hypothesis is now mostly favored
(especially in the random-bond model).

The validity of the logarithmic-correction exponents
(2.11) proved harder to establish quantitatively. The first di-
rect, clear, quantitative validation of the SSLJ prediction for
the magnetic susceptibility (that %=7/8) came in Ref. [14]
through series expansions. While the detailed scaling behav-
ior of Eq. (2.13) has long been ruled out, the weak versus
strong controversy persisted. In contrast to the susceptibility,
DD and SSLIJ agree on the double logarithmic behavior of
the specific heat. However, this has been notoriously difficult
to confirm numerically, and has been the source of much
controversy.

Simulational works, generally supportive of the vanishing
of @ and & and the specific heat diverging as a double loga-
rithm viz. Eq. (2.12), are found in Refs. [15-18] and Refs.
[18-20] for the bond-disordered and random-site Ising mod-
els, respectively (see also Refs. [12,14,21-27]). Indeed, plots
of the measured specific heat as a function of the double
logarithm of the lattice extent are contained in Refs. [15,18]
and Refs. [18-20] for the RBIM and the RSIM, respectively.
However, in Ref. [28] it was claimed that such apparent
double-logarithmic FSS behavior does not necessarily imply
divergence of the specific heat and numerically based coun-
terclaims that the specific heat remains finite (so that <0 or
a=0 and &< 0) in the random-bond [28,34] and random-site
models [35-38] also exist (see also Refs. [29-33]). The situ-
ation is summarized in Table L.

The difficulties in unambiguously discriminating between
the weak and strong scenarios on the basis of finite-size data
were highlighted in Refs. [28,37,39]. Indeed, in Ref. [14] a
fit to

(2.13)

a (2.14)

coo(t) o |In ¢

was attempted, and it was observed that & decreases from the
value of 1 (which corresponds to the pure model) as the
strength of disorder is increased. This could be interpreted as
supporting almost any reasonable value @< 1. In Ref. [37] it
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TABLE I. Selection of recent works supportive of the weak or
strong scaling hypothesis.

RBIM RSIM
Support strong universality hypothesis [14,21-24] [25-27]
and theoretical support for a=&=0 [8-11] [12]
or numerical support for a=&=0 [15-18] [18-20]
Support for weak universality hypothesis  [29] [30]
and theoretical support for finite C,(f) [31,32] [33]
or numerical support for finite C.(¢) [28,34] [35-38]

was pointed out that specific heat data in the literature, which
were stated to be supportive of Eq. (2.12), can often equally
be fitted to Eq. (2.1) with negative a, still consistent with the
Rushbrooke relation.

In this paper we address the problem from a fresh per-
spective, namely that of partition function zeros (see also
Ref. [3]). In Ref. [5] the scaling relation

A=p-%
for the logarithmic correction to the FSS of the Lee-Yang
zeros was derived. For the diluted Ising models in two di-
mensions, this leads to the prediction

(2.15)

" 15
A=-

— =-0.9375,
16

(2.16)

and verification of this value for the logarithmic correction
exponent characterizing the scaling of the Yang-Lee edge in
Eq. (2.6) is one of the aims of this work.

In addition to testing the applicability and efficacy of the
Lee-Yang-zero technique in random models, also at the level
of logarithmic corrections, a central aim of this paper is to
measure the density of zeros. Indeed, the correction exponent
for the density of zeros is given in Ref. [5] as

. yA+Ay

4, X (2.17)

From the scaling relations for logarithmic corrections, in the
special circumstances which prevail the diluted Ising models
in two dimensions given in Ref. [6], d, is related to the
specific-heat correction exponent & appearing in Eq. (2.1)
via

X A 105,

a_1+2A+a2_1+15 +dj,, (2.18)
having used the established value (2.9) for the leading gap
exponent [3]. The elusive specific heat scaling exponents «,
& can thus be measured from the density (2.7) together with
Egs. (2.10) and (2.18) and, in this way, one can distinguish
between the competing @=0, =0 and «<0 or &<<0 sce-
narios.

Since it is more contentious, we address the site-diluted

version. Unlike the self-dual random-bond version, the loca-
tion of the critical temperature in the site-diluted Ising model
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is not exactly known and has to be estimated numerically. In
this work, the highly accurate measurements for the critical
temperatures reported in Ref. [19] for different values of the
site dilution are used.

II1. SIMULATION OF THE RSIM

The partition function for a given realization of the RSIM
in a reduced magnetic field & is

Z:(B,h) = > exp(,BE €,€,0,0;+ D eiai), (3.1)
{oj} (ij) i

where L denotes the linear extent of the lattice and the sum
over configurations {o;} is taken over Ising spins o; € {1}
and where €; are independent quenched random variables
which take the values unity with probability p and zero with
probability 1-p. For simulational purposes, a regular
(square) lattice with periodic boundary conditions is used.
The percolation threshold for such a lattice in the thermody-
namic limit occurs at p=p.=0.592746- -, so that for p<p.
the lattice fragments into finite-size systems on which no true
transition can occur [40]. Writing

S= E 61'6]'0-1'0-',
(ij)

M=2 €0, (3.2)

and

pL(B:M) =2 py(S.M)exp BS, (3.3)
S

where the spectral density p, (S, M) gives the relative weight
of configurations with given values of S and M, the partition
function in imaginary field ix is

Zi(B.h) = 2 p(B:M)exp(ihM)
M

=Z7,(B,0){cos(hM) + i sin(hM)), (3.4)

where the expectation value has real measure. Assuming the
Lee-Yang theorem holds [2,3], since odd moments of the
magnetization vanish for =0 (8< ), the zeros for a given
realization of disorder are given by the values of 4 for which

{(cos hM) =0. (3.5)

Finally, for each value of L and p, these zeros are averaged
over realizations of disorder and the resulting jth Lee-Yang
zero is denoted by rj(L). Errors associated with the zeros are
computed as sample-to-sample fluctuations.

We have simulated, using the Wolff single-cluster algo-
rithm [41], three different values of the dilution, namely, p
=0.88889, 0.75, and 0.66661. From Ref. [19], the values of
the critical temperatures for these three dilutions are g,
=0.53781(2) for p=0.88889, B.=0.77125(8) for p=0.75,
while B,=1.10 corresponds to p=0.66661(3). In each of
these three cases, we have run lattices of extent L=32, 48,
64, 96, 128, 196, and 256. The number of samples simulated
for each lattice size and each value of the site-occupation
probability (and corresponding B3, value) is given in Table IL.

We have monitored the behavior of the nonlocal observ-
ables (such as the susceptibility) with the Monte Carlo time
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TABLE II. The number of samples simulated for each lattice
size L at each value of the site-occupation probability and corre-
sponding B, value (from Ref. [19]).

L 32 48 64 96 128 196 256
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TABLE III. The estimates for the leading-exponent ratios y/v
and A/v from fits to the scaling behavior of the susceptibility and
first Lee-Yang zeros as well as estimates for (vy—yp)/v. These
estimates agree with the theoretical values, which are 7/4, 15/8,
and 0, respectively.

p=0.88889 £.=0.53781 1000 1000 1000 600 600 250 250
p=0.75 B.=0.77125 1000 1000 1000 1000 1000 550 270
p=0.66661 B.=1.10 1000 1000 1000 920 600 270 160

by using a standard logarithmic binning of the dynamical
data. We have checked that, in all the cases, the nonlocal
observables have reached a plateau (as a function of the
Monte Carlo time).

IV. SCALING AND DENSITY ANALYSES

The analysis focuses on the odd sector of the RSIM,
which is connected to the even sector through the standard
scaling relations and their logarithmic counterparts [5,6].
This connection is used to determine the specific-heat expo-
nents through the density of zeros, in addition to a detailed
analysis of the susceptibility and the Lee-Yang zeros.

The FSS analyses of the magnetic susceptibility and
Yang-Lee edge focuses on the correction-to-scaling expo-
nents. From Eq. (2.4), the reduced temperature is expressed
in terms of the correlation length near criticality as

r~&E"n £)7". (4.1)

Substituting Eq. (4.1) into Egs. (2.3) and (2.6) gives the scal-
ing behavior for susceptibility and the lowest lying Lee-Yang
zeros in terms of the correlation length. Because there are no
logarithmic corrections to the FSS behavior of the correla-
tion length [6], for sufficiently large lattices £, may be re-
placed by L. This substitution then gives for the FSS of the
susceptibility and the jth Lee-Yang zeros

XL~ Ly/v(ln L)(Vi/—yf/)/v’ (42)

rj — L—A/V(ln L)(VA+Aﬁ)/V’ (4.3)

respectively. The values for the correction exponents ¥ and ¥
given in Egs. (2.8) and (2.11) have been numerically estab-
lished for the RBIM in Refs. [14,22] and that for and 7 in the
RSIM has been verified in Ref. [27]. Therefore, their confir-

p=0.88889 p=0.75 p=0.66661
/v 1.747+0.007  1.755+0.005  1.752+0.007
(vy—y?)/v  -001%0.03  0.02%0.03 0.01+0.03
Alv 1.879+0.004  1.878+0.006  1.878+0.006

mation in this setting as vy—yP=0 serves as a useful check
on the accuracy of our method at the logarithmic level.

The scaling analysis begins with p=0.88889 (and B
=0.53781). A double logarithmic plot of x; against L is pre-
sented in Fig. 1(a), and a fit to all data points yields y/v
=1.747(7) in agreement with Eq. (2.8). The goodness of fit
corresponds to a x* per degree of freedom (x*/Npg) of 0.8.
The FSS correction exponent (vy—y?)/ v is extracted by a
fit, corresponding to Fig. 1(b), of In y,—7/4 In L against
In(In L), giving a slope —0.01(3) (with x?>/Npp=0.8) com-
patible with the expected value of zero from Egs. (2.8) and
(2.11). These results are summarized in Table IIT alongside
the results of similar analyses at p=0.75 (8=0.77125) and
p=0.66661 (8=1.10). In each case, the x*/Npg indicates a
good fit and compatibility with the SSLJ theory is firmly
established.

Subleading corrections to Eq. (4.3) are expected to take
the form [18]

o 1
XL:ALW”anL)@TWW”{l4—0(———)}. (4.4)

InL

The amplitude A of the leading term may firstly be estimated
by fitting to y;=AL”". A subsequent fit to the parameters
governing corrections to scaling in Eq. (4.4) yields the esti-
mate (vy—y9)/v=-0.03(2) (with x*/Npp=0.8) for at p
=0.88889. That is, the inclusion of additive corrections does
not lead to an improved estimate for the multiplicative loga-
rithmic exponents. [We have also tested additive corrections
of the form InIn L/In L in place of 1/In L in Eq. (4.4). While
this leads to small improvement over Eq. (4.4), it also does
not significantly affect the estimates for the exponents of the
multiplicative logarithms.] This observation holds for all

—
a
—
< 0.05 I .
~
™~
= _
a
,_1

FIG. 1. (a) FSS plot for y; at
p.=0.88889. The slope gives an
estimate for y/v of 1.747(7). (b)
Plot of Inyx;,—7/4InL against
In(In L) giving slope —0.01(3), in-
dicating no multiplicative loga-
rithmic corrections to the FSS of
the susceptibility.

0.1
10}
=
o 8
r_i
0.
6.
' ' 0.05 '
3 4 5 6 12 13
(a) 1nL (b)

14 15 16 17
In(1nL)

031134-4



SCALING ANALYSIS OF THE SITE-DILUTED ISING...

PHYSICAL REVIEW E 78, 031134 (2008)

0.6

6t pé
— FIG. 2. (a) FSS plot for the

7t 00
H 7 2 { lowest Lee-Yang z€1o at p.
G Te) ‘{\ﬁ\%i\ =0.88889. The slope gives an es-
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quantities analyzed below and for all values of p, and we a=a,. (4.7

henceforth refrain from reporting on additive corrections.

The analysis of the leading FSS behavior at p=0.88889 of
the first Lee-Yang zero of Ref. [3] is reconfirmed (to higher
precision) in Fig. 2(a), where, ignoring corrections, the slope
of the log-log plot yields A/ v=1.879(4), compatible with the
expected value of 15/8. The x?/Npg here is 0.7. While the
corresponding fit at p=0.66661 yields A/v=1.878(6), the
equivalent fit (using all lattice sizes) for p=0.75 gives the
estimate 1.883(4), which is two standard deviations from the
theoretical value. To avoid contamination due to scaling cor-
rections, the smallest lattices may be removed from the
analysis in standard fashion, and compatibility with theory is
indeed restored when the smallest pair are removed from the
fit; the L=64 to L=256 data again yields A/v=1.878(6)
(with x*/Npgp=1.8). These reconfirmed results are also sum-
marized in Table III.

To test the scaling relation (2.15) and the prediction
(2.16), In r;+15/8 In L is plotted against In(In L) in Fig. 2(b)
for p=0.88889. A fit to all points yields slope

A+ AD
e 0.0102), (4.5)
compatible with zero. The y*/Npg here is 0.7. With the by

now established theoretical values for A, v and ¥ from Egs.
(2.8), (2.9), and (2.11), this yields

A=-0.9502), (4.6)

a value compatible with (2.16) and confirming Eq. (2.15) in

the RSIM. The analysis at p=0.66661 gives (vA+AD)/ v=
—0.01(3), comparable to Eq. (4.5) and compatible with
theory [the corresponding A value is —0.95(3)]. At p=0.75
one finds the estimate —0.04(2), using all lattice sizes. Again,
compatibility with theory is restored by dropping the two
smallest L values, where one again finds —0.01(3) [A
=-0.95(3)]. These estimates for A are summarized in Table
Iv.

Accepting, now, that the values A=15/8=1.875 from Eq.
(2.9) and A=-15/16=-0.9375 from Eq. (2.16) are sup-
ported by the data for each dilution level, Egs. (2.10) and
(2.18) give the scaling exponents for the specific heat. In
particular, the logarithmic correction exponent is identical to
that of the density of zeros

Therefore a=2—-16a,/15 and &=d, can be extracted from
the scaling form (2.7) for the density of zeros, a form which
is expected to hold for small enough r (i.e., close to the
critical region).

A robust method to determine the density of zeros from
simulational data was developed in Ref. [4]. Define the den-
sity of zeros along the singular line r>ry(£) as

gu(r) =L dr—r(L)], (4.8)
J

where r;(L) is the position of the jth zero for a lattice of
extent L. Here, j is called the index of the zero. Integrating
along the locus of zeros gives the cumulative density of ze-
ros (or index density) to be

! J
G (r) = L gi(s)ds = 14 for ri(L) <r <r,(L),

(4.9)
so that at a zero, it is given by the average
2j—-1
G lr(L)]= TR (4.10)
From Eq. (2.7), this may be fitted to the form
G(r) = a;r(In r)2 + a5, (4.11)

allowing for an additional parameter a; which determines the
phase. A value of a3 greater or less than zero indicates that
the system is in the broken or symmetric phase, respectively,
so that a;=0 only at the transition point r=0. The second
criterion for a good fit is good data collapse. Note that this

TABLE IV. The estimates for the specific heat exponent & and

logarithmic-correction exponents A and &. These are in agreement
with the theoretical values from the strong universality hypothesis,

namely, a=0, A=—15/16, and @=0.

p=0.88889 p=0.75 p=0.66661

A -0.95+0.02 ~0.95+0.03 -0.95+0.03
a -0.02+0.03 0.01+0.02 0.00%0.03
& -0.02%0.05 -0.010.03 -0.04%0.05
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FIG. 3. (a) The integrated density of zeros at p=0.88889 (diamonds), p=0.75 (crosses) and p=0.66661 (circles). The excellent data
collapse (four data points for each of seven lattice sizes are involved at each value of p) and zero intercept indicate the correct transition point
and the fitted curves give a, compatible with the expected value 16/15 (a=0). (b) The absence of multiplicative logarithmic corrections in
the integrated density of zeros indicates that the specific heat logarithm exponent &=0 independent of the degree of dilution.

method does not allow an independent goodness-of-fit test
[4].

The integrated density of zeros is plotted in Fig. 3(a) us-
ing the first four Lee-Yang zeros for lattices from size L
=32 to 256 (28 points in all) for each value of the dilution,
demonstrating excellent data collapse in each case. For p
=0.88889, three-parameter fits to Eq. (4.11), for small r, with
d,=0 are supportive of the theoretical values of a,=16/15
and a;=0; using the eight lowest data points, one obtains
a;=0.0000002(4) and a,=1.076(16). The latter results cor-
responds to the estimate a=-0.02(3), from (2.10). The cor-
responding results in the p=0.75 and p=0.66661 cases are
a3=-0.0000002(3), a,=1.062(10) [«=0.01(2)] and a3=
—0.0000001(4), a,=1.066(15) [@=0.00(3)], respectively.
These results for « are gathered in Table IV.

We now accept that a; is indeed zero and the theoretical
value a,=16/15 (a=0) from (2.10) holds for each dilution.
Potential multiplicative logarithmic corrections are detected
by plotting In G—16/15 In r against In(In r) in Fig. 3(b). A fit
to all data points for p=0.88889 gives a=d,=0.012(3),
which is four standard deviations from the theoretical value
of zero. However, focusing on the scaling region closer to
the origin establishes compatibility with the theory. For ex-
ample, fitting to the lowest eight data points yields a=d,=
—0.02(5). The equivalent results for p=0.75 and p
=0.66661 are a@=d,=-0.01(3) and —0.04(5), respectively.
The corresponding fits are depicted in Fig. 3(b) and the esti-
mates for & are summarized in Table IV. These values con-
stitute numerical evidence that a=&=0, independent of di-
Iution and in favour of strong universality.

V. CONCLUSIONS

The debate regarding the critical behavior of the disor-
dered Ising model in two dimensions has persisted for over
thirty years (most recently in Refs. [18,38]). Here the SSLJ
prediction [8—10] for the multiplicative logarithmic correc-
tions for the scaling behavior of the susceptibility has been
reconfirmed through a careful FSS analysis. In addition to
this, the Lee-Yang zeros have been determined to high accu-
racy and their logarithmic corrections verified for the first
time.

The scaling behavior of the specific heat in the site-
diluted version of the model has been particularly difficult to
pin down directly, and fits to the measured specific heat as a
function of the double logarithm of the lattice extent
[15,18-20] have been claimed not to be unambiguous [28].
Here an alternative approach has been taken, involving the
density of Lee-Yang zeros. Using scaling relations [5,6] to
connect to the even sector of the model, the specific-heat
scaling and correction exponents are clearly determined.
Since the simulations are performed at three different values
of the dilution (some quite large), the analyses presented
herein for the susceptibility, the individual Lee-Yang, zeros,
and for their densities, are unambiguously supportive of the
strong scaling hypothesis.
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